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PREFACE

Mathematics is such a vast and rapidly expanding field of study that there
are inevitably many important and fascinating aspects of the subject which,
thougis within the grasp of secondary school students, do not find a place in the

curriculum simply because of a lack of time.

Many claesses and individual students, however, may find time to pursue
mathematical topics of specisl interest to them. This series of pamphlets,
whose production is sponsored by the School Mathematics Study Groups is designed
to make material for such study readily ac.essibdle in classroom quantity.

Some of the pamphlets deal with material found in the regular curriculum
but in a more extensive or intensive manner or from a novel point of view.
Others deal with topics not usually found at all in the standard curriculum,
It is hoped that these pamphlets will find use in classrooms in at least two
ways. Some of the pamphlets produced could be used to extend the work dome by
a class with a regular textbook but others could te used profitably when teachers
want to experiment with a treatment of a topic different from the treatment in the
regular text of the class. In all cases, the pamphlets are designed to promote

the enjoyment of studying mathematics,
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MATHEMATICAL SYSTEMS
COMMENTARY FOR TEACHERS

In this boc et it is particularly important that teachers have clearly
in nind both the objectives of the booklet and the suggested method of approach

to bte used with it.

The main objective is to lead the students to achieve some appreciation

of the nature of mathematical systems. It is neither intended nor desirable
that the students memorize the various tables introduced here, or drill for
nastexy of the operations introduced here.

It is especinlly important that the teacher read this booklet through
very carefully bvefore planning his presentation, and give considerable thought
to some introductory motivation, and even more to how to lead the students to
di scowver the various relationshiis and properties which appear in the booklet
for themselves in advance of the reading of the text. The text itself attempts
to suggest problems and processes for doing this as does this teacher's guigde.
However, these can be effective only if carefully planned for by the teachers.
The process of discovering, of perceiving for one's self is & vital step in

achieving our major objective: an appreciation of the nature of some types of
mathermatical systems. This is close to an sppreciation of the nature of
modern nathematics and of the work of mathematicians.

One of the most {mportant activities of modern mathematicians is the
search for common attridbutes of properties often found in apparently diverse
situations or systems. Sometimes these common elements are deliberately built
into mev systems which are constructed as generalizations or abstractions of
old systems, as when the number system is extended from the system of counting
numbe x's to the whole numbers, to the rationsl numbers, etc., etec. Sometimes
these common elements are observed in systems less clearly related at first
glance., as when the changes of position of a rectangle into itself are
conceived of as forming an algebraic system with a "multiplication" table,
which 1s discussed in the booklet.



Frequently, the systems developed out of the intellectua' curiosity of
mathematicians and their search for patterns in diverse abstract situstions
have been exsctly the tools needed and seized upon by scientists in théir
attack on the problems of our physical world. The theory of groups, which
actually has as its logical beginnings the properties discussed in this
booklet, had its chronological beginnings in the early 19th Century in problems
relating to the solution of equations. Matrices, some of which form groups
and give further examples of the principles of this booklet were invented
lsrgely by the Englishman Arthur Cayley a little later. within our generation
the Germar physicist Werner Heisenberg has used matrices in the formulation of
the quantum mechanies which is highly importent in modern physics. Analogous
stories relate the development of radio by Marconi to the differential
equations of Maxwell, and point out that the outgrowths of Einstein's relativity
theory owe much to his use of the tensor calculus developed by the Italian
geometers Ricel and Levi-Civita. All of these stories have the same theme,
namely, that both mathemsaticlans and scientists are always seeking unifying
principles or patterns. Frequently mathematics, developed solely for the
intrinsic interest of its properties and structure, was later found to fit
the needs of science, but for both sclence and mathematics we need to develop

students who can see and understand patterns and structure.

In this booklet we are rtudying mathematical systems involving sets of
elements and binary operations. BSuch systems which have certain simple
additional properties are called groups and their study is a msjor branch of '
gso-cnlled "modern algebra.” We shall not use all of these technical terms.
However, other substantinl objectives incidental to the msajor concern of this

booklet and «ppropriste for secondary school ctudents are:

1. Inereased understanding of the nature and occurrence of the

commutative, associative, and distributive properties, as

well = ... roncepts of closure, identity element, inverse

of an element,

2. Increased understanding of ihe inverse of an operation and
its relationship to inverse and identity elements.

Additional digscussions of these ideas and problem materials may be found
in the books listed in the bibliography at the end of this booklet.
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Aside from the general considerations mentioned sbove, there are very
specific applications of the modular systems with which this booklet {s
chiefly concerned. The applications to days of the week, hours of the day,
days in the month are obvious and immediate. Not quite so obvious are
applications to two-way switches (mod 2) which are most common, but also to
n-vay switches for a2 number of small values of n. These are used increasingly
in modern computing and in industry. The recognition that sll are aspects of
one system -- modular arithmetic -- gives insight not only to mathematics
but to various applications as well. This in turn is an example of
periodicity -~ a repetitive pattern -- that occurs so often within and outside

of mathematics.

The teacher should be especially cautioned in the use of the exercises
in this booklet. There sre altogether too many for use in one class. To give
811l would lay too much stress on techniques and make a chore out of what should
be an interesting development. Many exercises are given so that the teacher
may use different sets in different classes and have some left over for
review at the end.




1. ﬂ _Ngx Kind of Addition

Several of the sections, including the first, discuss the proparties of
what is referred to as modular arithmetic. The face of a clock is used to
illustrate modular addition. The following quote provides background for the
basic notion of this idea:

"In number theory we are often concerned with properties which are true
for a whole class of integers differing from each other by multiples of a
certain integer. Take, for instance, the fact that the square of an odd
integer when divided by 8 leaves 1 for a remainder. Here we huve a
property holding for all odd numbers; that is, for a class of numbers differing
from each other by multiples of 2. As another example, we see that when the
last digit of a number, in decimal notation, is 6, then the last digit of its
square will also be 6. Thus, in this simple example, we deal again with a
property shared by integers differing by a multiple of an integer; namely, 10.

"The consideration of properties holding for all integers differing from
each other by a multiple of a certain integer leads in a natural way to the
notion o’ congruence. Two integers 8 and b whose difference a - b is
divisibl: by a given number m (mot O) are said to be congruent for the
-modulus m or simply congruent module m. Gauss, who introduced the notion
of congruence, proposed the notation

amd (mod m)

to designate the congruence of a and b modulo m."l

Some textbooks use the following definition:

If a=xm+Db, then a®b (modm). The ® sign is read, "Is
equivalent to" or "i{s congruent to".

We emphasize that there {s no need for the pupil to become familiar with
the terms used in the above discussion, including "modular arithmetic".

In solving preblems using replacements, encourage the pupil to make a
11st of possible replacements first. For (mod 5) the set of possible
replacements would be (0,1,2,3,k); for (mod 8), the set would be
{0,1,2,3,4,5,6,7). These are examples of finite systems,

lUspensky and Heaslet, Elementary Number Theory, McGraw-Hill, 1939,
page 126.




For the teacher's information each element of the set can be considered
a5 an esquivaience class, thus, numbers are put in equivalence classes.

Without a doudt, some pupils will wonder why the symbol "&" ("is con-
gruent to") 1is used instead of “«", This is an excellent opportunity to
point out that the « sign is used when we have two names for the same thing;
thus 3 + 2 = 4 + 1 since these are two names for the same number, five, 1In
the case of modular arithmetic, when ve say "Five is congruent to one, (mod 4)",
the "five" and the "one" are not names of the same thing, thus it is necessary
to introduce another symbol to describe this relationship.

Answers _t;g Exerciges 1

1. + 0 L 2 3

2 2 3 0 1
3 3 0 1 2
(a) © (¢} ©
(b) 2 (da) 1
2. (mod 3) (mod %)
+ 0 1 2 + 0 1 2 3 4
0 0 1 2 0 0 1 2 3 I
1 . 2 0 1 1 2 3 L 0
2 2 o) 1 2 2 3 N 0 1
3 3 4 0 1 2
I N 0 1 2 3
3. {(a) O (e) 1
() 1 () 2

The teacher may want to let the students try exercises (mod 4) before
taking up other moduli.
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k. (mod 6) (mod 7)
+]1 0 1 2 3 4 5 +]Jo 1 2 3 & 5 6
0 0 1 2 3 L 5 0 0 1 2 3 4 5 6
1l 1 2 3 4 5 0 1l 1l 2 3 L 5 6 0
e 2 3 L 5 0 1 e e 3 " 5 5 0 1l
3 3 L] 5 0 1 2 3 3 L 5 6 0 1 2
L L 5 o] 1 2 3 L L 5 6 0 1 2 3
5 5 0 1 2 3 L 5 5 6 o] 1 2 3 L

6lé6 o 1 2 3 L5

(a) 2 (e) 2
(b) & (a) 2
The pupils may use the tables made in Problem 3 sbove or make sketches
of clocks.

5. (a) 1 (e) &
(b) 1 (£) &
(e) 1 (S) 1
(&) 2 (h) ©

6. 23 = 5(4) + 3, The hand will go around four times and stop at 3.
7. GCeven hours after eight o'clock is five ofcloeh. This is addition
{mod 12).

8., Nine days after the 27th of March is the fifth of April. This is addition
(mod 31) since there are 31 days in March.

2. A New Kind of Multiplication

This section does for multiplication what the first section did for
addition. It not only gives other examples of operations for use in the
next section but also prepares for modular arithmetic in a later section.
The transition from getting a multiplication table by adding to getting
1t by dividing and teking the remsinder should be made on the initiative of
the students as a means of making computation easier. It is hoped that this
could be discovered by some of the students themselves. Problems > and 6
are designed to encourage this transition. This is certainly one place wvhere

Q 11




to push a trensition too rapidly can lead to troudle but where discovery in
~ the students® own good time can be an enjoyable experience for all concerned.

Answvers to Exercises 2

1. (a) (mod 5)
X 0 i 2 3 k
0 ¢] 0 0 0 0
110 1 2 3 &
210 2 & 1 3
3 0 3 L b 2
L 0 L 3 2 1

(v) (mod 7)
xlo 1 2 3 L 5 6
ofo o o o0 ©0 o0 o
1 {0 1 2 3 4 5 6
2|0 2 L 6 1 3 5
3 0 3 6 2 5 1 N
Ljfo & 1 s 2 6 3
5{0 5 3 1 6 4 2
6 J]o 6 5 L 3 2 1
(c) (mds)‘
x| o 1 2 3 4 5
6cjJo o o o0 o0 o
110 1 2 5 &k
210 2 L o0 2 4
310 3 0 3 0 3
L]1]o 4 2 o 4 2
5 ¢ 5 4 3 2 1

i



® 7.

*8.

(a)
(v)
(e)

(a)
(v)

(a)

(v)

(&) 1
(e)

(e) 6
(d) o

[and ¢ 4.8 [V I« T

(7)(10) = ¢ (mod 31)

70 # 8 (mod 31)
4 + 8 = 12; hence February 12 is the date 10 weeks after
December Lth.

(2)(365) ® ? (mod 7)
730 B 2 (mod 7)
Thursday was the day of the week for August 6, 1959.
(mod 5)

X 0 1 2 3 L

0 0 0 0 0 0

L o] L 3 2 1

The Table is identical with the multiplication Table (mod 5). Dividing
& whole number by 5 and retaining the remainder yields the same
results as those obtained by subtracting the greatest multiple of five

contsined in a8 given number and retaining the remainder. It may be

easier to divide and retain the remsinder.

(&)
(v)
(e)

(a)
(p)
(e)
(d)
{e)

x =2 ©o{d) x =3
X = U4 (e} x =
x=1

impossible ”

impossible

x=1, x=3, x=5

impossible

x=0, x=2, x=4




3. What Is an Operation?

Skills and Understandiqgg

1. To recognize a binary operation described by a table.
2. To recognize a binary operation deecribed in words.,

3. To find, from a table, the result of putting two elements together
in a binary operation described by the table.

4, To find, by computation, the result of putting two elements
together in a binary operation described in words.

2+« To tell, from the table for a binary operation, whether or not
the operation is commutative,

6. To know that:

(a) In order to show that & binary operation is associative, it
1s necessary to show that an equation [e.g. a % (b ¥ c) =
(a % d) % c] holds for every triple of elements a, b, c.

(b) In order to show that a binary operation 1s not ass. ciative,
it is sutficient to find one triple of elements a, b, ¢
for which the equation does not hold [e.g. & % (b % o) #
(a % b) %c].

Teaching Suggestions

To be given a binary operation, we must be giren a set of elements and
a way of combining any two elements to get a definite thing. The "definite
thing" may or may not belong to the original set of elements. The two elements
we combine may be the same element taken twice. If the operation is given to
us by a table, the get is composed of those elements whicl. appear in the
left-hand column and in the top row (the same elements must appear in both
places). For example, the set for the operation of Table (c) is (0,1,2,3};
that for the operation of Table (d) is (1,2,3}. In Table (@), all the
entries in the table belong to the set {(1,2,3); in Table (c) many of tue
entries in the table do not belong to the set {0,1,2,3). This point is
discussed more fully in the next section on closure,

Bring out by class discussion that the entries in the tables {the
results of putting two elements together) could be anything at all. As later
examples will show, they do not have to be numbers.

-

-
e




Practice reading the tables. Stress that, in eveluating 1 03, the
1" 4is to be found in the left column, and the "3" in the top row. Foint
out that 1 03 =5 and 301 =7, so it is necessary to be careful about

the order in which elements are written.
Some examples for class discussion are given below.

Example 1: Set: The counting numbers.

Rule of Procedure: Given sny two elements, take twice the first and add
three times the second. This is an operation, but it is not commutative
and it is not associative.

Example 2: Set: The counting numbers.
Rule of Procedure: Given any two elements, take twice one of them and
add three times the other.

This rule does not define an operation since a "definite thing" is
not always determined. For instance, in combining 2 and 3, we are
allowed to form either 2°-2 + 4¢3 =13, or 2.3+ 3.2 =12, The
result of an operation applied to two elements must be unique, that is,
there can be one and only one answer. It could also be seen from a
table that this rule does not describe an operation. The table would
have more than one entry in some places (everywhere except on the diagonal

from upper left to lower right).

Example 4: Set: The whole numbers.,
Rule of Procedure: GCiven any two elements, divide the first by the

second.

This rule does not def'ine an operation, since division by zero 1is
impossible. The elements 2 and 0 cannot be put together in that
order, Notice that, in the order 0 &nd 2, they can te combined
(the result is zero). It could also be seen from & t&ble that this
rule does not describe an opersation. The table would have some of the
spaces blank {the column with "0" &t the top would be blank).

10




Discussion of Exercises 3

- .q»L‘H“

2.

In the schematic diagram at the
right, a ¥ b 1is to be entered \
at position X,

and b¥a is "

’
ket K - |

to be entered at position Y. N

X--=----{ o

-
’

These two positions are
cymetrically located with
respect to the diagonal from
upper left to lower right.
(The elements are arranged in

') S

[

the same order in the top row

and left column.) If an operation

is commutative, its table will be symmetric about this diagonal, and
conversely.,

Bring out by discussion that, to prove an operation i_s associative,
requires testing every triple; one example would be sufficient to prove
an operation is not assoclative. To prove associativity for an operation
Each student
should check 2 or 3 cases and if all of them are satisfactory, the

following statement can be made: "This operation appears to be

by examining all the cases is almost alwmys a long process.

associative, but we are not really sure."

In making & table for each of these operations, arrange the elements of
the set in the same order in the top row and left column. Compute a&nd
£i1l in as many entries in the table &s needed to see the pattem.
Associativity can be decided from known properties of the counting
numbers.

(a) This operstion is not completely described. If the two given
Bring out,
by class discussion, that, if the two numbers are the same, the

result of the operation should be defined as that same number.

numbers are equal, there is no smaller omne, of course.

11



S. and 6. The students will need help in beginning these problems. The

successive stepa are as follows:

(1) Choose a set (each pupil may have a different set, but it is better
not to have too many elements in each set so the problem will not
be too long). Suppose the set (1,2,3) is chosen.

(2) Make the framework for a table as
shown at the right. The elements
in the set which was chosen in (1)
will appear in the lest column
and top row. Arrange them in the

same order.

w n %k

(3) Choose a symbol, such as %, for
the operation and put it in the
left-hand corner of the framework; make up a name to go with it,
such as "star".

(&) Fill in the table. FPFmphasize that the names of any objects whatever
may be placed in the body of the table -~ it is not necessary that
these objects be elements of the set chosen in {1). If the
operation is to be commutative, the table must be symmeiric about
the diagonal from upper left to lower right. If the operation
is not to be commmutative, the table must not be symmetric.

Here, &8 way to write the information is to srrange the elements and the
corresponding results of the operstion in two rows or columns. Usually
some pymbol (such ms "x") is used to denote &n element of the set

and a different symbol (such as "y" or, in this case, "x3“)
the corresponding result of the operatioé. The table is given in two

denotes

columns in the answers. It could also be written in two rows as shown

below.

x lo 1 23 & 5 6 7 8 9 1

x3 }o 1 8 27 64 125 216 3h3 512 729 1000
Notice that a unary operation requires only a one-dimensional table,

2 binary operation requires & two-dimensional table, and a termary
operation would require a three-dimensional table.

12
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Ansvers o Exercises 3

1.

(a) 1 (n) 1
(») 6 (1) 8
(e) 8 (4) Not possible; 102 = 4
() 7 and 1 04 1is not defined
(e) 2 sinee L4 does not appear
(£) 3 in the top row.
(g) 1 (x) 3

(1) 3

(a), (v), (4), (e). The table must be symmetric about the disgonal
from upper left to lower right. See discussion, Exercises 2.

There is no short-cut method; to prove assoclativity each triple of
€lements must be combined in the two ways and the corresponding results
mist be equal. The operations of Tables (a) and (d8), (e) are associative;
those of Tables (b) and (c) are not. See discussion, Exercises 3.

See discussion, Exercises 3. The operation symbols are omitted in the
following tables:

(a) 2% 27 28 ... T4

2% |26 26 26 ... 26

27 a6 27 27 ces 27

B |26 271 28 .., 28 Commutative: Yes
. . . e see . Associative: Yes

™ |26 27 28 ... T4

(b) 201 502 503 ... 535
201 1301 502 503 ... 535
o02 (502 502 503 ... 535

503 1503 503 503 cee 535 Commutative: Yes

. . . . ere . Associstive: Yes

235 |335 535 535 ... 535
13



(c) 2 3 5 Toun ...
2 2 3 2 T i1 .
3 3 3 p 7T 1
b ) 5 5 T 1 . Commtative: Yes
7 7 7 7 7 11 ceo Associative: Yes
11 11 n 11 11 11 .
(a) b k2 W ... 60
Lo Lo 4o Lo ceo ko
b2 | k2 k2 k2 ... k2
Ly Ly Ly Ly coe I Commitative: No
. . . . ceo . Assoclative: Yes -
60 60 60 60 ooe 60
(e) 1 2 3 k9
1 3 4 > 51
2 5 6 T ees 53 Commtative: No
3 7 8 9 54 Associative: No
. . . . . (Try the triple 1, 2, 3.)
4 | 39 100 101 ... 1k7

No

1k




(r)

(g)

(n)

1 2 3 4 5 6 .
111 1 1 1 1 1 .
211 2 1 2 1 2 .
31 r 3 1 1 3
L 1 2 1 4 1 2
5§41 1 1 1 s 1 .
6fj1 2 3 2 1 6

1 2 3 4 5 oo
111 2 3 4 5 .
2]l 2 6 4 10 ..
313 6 3 12 15
L 4 L 12 L 20 .

5 s 10 15 20 5 -

1 2 3 L .
11 1 1 1 .

2 2 L 8 16
3 3 9 27 81 .
L4 L 16 64 25 .

R ks O]

Commutative: Yes

Associative: Yes

Commutative: Yes

Associative: VYes

Commutative: No
Associative: No

(Try the triple 2, 1, 3:
(213 -8 42 2(13).)



diagonal from upper left to lower
right {and that each place in the 3 Z
table be filled uniquely so that

the table does describe an operation). See discussion, Exercises 2.

5. Many answers are possible, of course. * 1 2 3
The only requirement iz that the 1 X Y 7
table be symmetric about the

2 Y P Q
Q R

6. Many answers are possible, of course. ¥ 1 2 3
The only requirement is that the 1 X P
table must not be symmetric about

2 P R

the g;;ngcml from upper left to-
lower right (and that each place in 3 Q P
the table be filled uniquely so that

the table does describe an operation). See discussion, Exercises 3.

£ N

7. = x3 See discussion, Exercises 3.
0 0
1 1
2 8
3 27
L 6l
3 125
& 216
7 343
8 512
) 129

10 1000

16

ty
bt




k. Closure

Skills and Understlndiggg

1. To recognige, from the table describing a binary operation, whether
or not & set is closed under the operation.

2. To find whether or not a set is closed under a binary operation
descrided in words.

Teaching §g§geations

The discussion here should prepare the pupil for consideration of more
general systems where the elements may not be numbers.

Bring out, by class discussion, that closure involves two things:
(1) It must be possible to put any two {not necessarily different) elements
of the set together and (2) the result obtained must always be an element
of the set. Material for class discussion is provided by the various parts
of Problem 4 of Exercises 3.

As with associativity (see discussion of Problem 3, Exercises 3), to
pProve & set 1s closed under an operation, sll cases must be considered; a
single counter example would prove that the set 1is not closed under the
operation.

It has been found in some classes that the pupils have difficulty because
they expect the concept of closure to be much more difficult than it really
is. Perhaps they should be reassured n this point.

The chief purpose of Examples 5 and 6 is to contribute to the under-
standing of closure by showing what A set must contain if it is to be closed.
This is in & way also & preparation for the discussion of the existence of an
inverse. Incidentally, the idea of & generator is an important mathematical
concept; e.g., all the counting numbers are generated by the single number 1
under addition. This is the principle of mathematical induction: A statement
is true for all counting numbers if, first, it is true for the number 1 and,
second, whenever it is true for a counting number k it is also true for
k +1. Ina way we "generate” the truth of the statement for sll counting
numbers by starting with 1 and procceding step by step. Some teachers may
feel that these two examples are too hard. If they are omitted the following
Problems in Exercises 4 ghould also be omitted: 3, 4, 5, 6; also Problem 7
in Exercises 6 should be omitted.

17
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Discussion of Exercises &

1.

*?.

%8,

Each table determines a set (the set of elements in the left column and
top row), and descridbes completely the corresponding operation. For a
set to be closed under the corresponding operation, each entry in the
body of the table must be an element of the set. In Tables (a), (d),
and (e) this is true; in (b) and (¢), it is not.

From the defin{tion of commutativity in Section 3, it must be possible
to put any two elements of the set together in either order and the same
result must be obtained, but the result of the operation is not required
to be an element of the set, In fact, Table (b) of Section 3 gives an
exsmple of a commutative operation, and the set on which the operation is
defined {s not closed under the operation.

From the definition of associativity in Section 3, it must be possible
to put any three elements of the set together in the two ways specified
and the same result must be obtained. This means that the set on which
the operation is defined must be closed under the operation since, if we
can combine &, b, ¢ as (a +b) + ¢, then certainly =a +b must be
an element of the set on which the operation is defined; otherwise we
cannot proceed with (a + b) + c. That is, the set is closed under the
operation.

9. and 10. The pupils may need help in beginning these problems. The set

of elements has been chosen, but each pupil should choose a symbol for
his operstion and £ill in the eatries in the tsble. See discussion of
Problems 5 and 6, Exercises 2.

Answers to Exercises &

1,

The sets of (a) and (d) are closed under the corresponding operations
(all the entries in the table appear in the left column and in the top
row); those of (b) and (c) are not closed {some entries in tables (b)
and (c) do not appear in the left column and in the top row)., See
discussion, Exercises 4.

(a) Closed (f) Not closed: 15 - 35 cannot be performed
(r+) Closed (g) Closed
(e) Closed (h} Closed
(d) Not closed (i) ©Not closed: s+ 7 1is not a prime
(e) Closed #(J) Not closed: 3+ 3= 11 (pase 5)
18
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3. (&) (2,4,6,...,2k,...) where k is a counting number.
() (2,22,23,...,2",...) vhere k 1is a counting numzber,

4. (a) {7,14,21,,,.,7k,...} where k 1is a counting number.
(v) (7,72,73,...,7]‘,...} vhere k 1is a counting number.

5. (o) 101=3, (101)0 12301 = 2.
[1@1)01]01-201 ~1.
If we continue the operation ©, we generate the same set again.
Hence the set (1,2,3) 1s the sub-set of § generated by 1
under the operation Q.

(?) 202=2, (202)02a=2.
[(202)02l02-202.2.
It is clear that the subset of S generated by 2 under the
operation @ is the subset (2]).

®6. (3, 343), 3+3)+3, [(343) 43143, ...} or {3,1,%},...3

Yes; 3 and %‘- are in the subset of rationals generated by 3 under

division. No; 3 + % or 9 1s not in this subset. Therefore the set

is not closed under division and hence it cannot be associative. See the
discussion un Problem 8.

7. No; see discussion, Exercises k.
8. Yes; see disrussion, Exercises &4,

9. Many answers are possible, of course. % 0 43 100
The only requirement is that each
entry in the table telong to the
set {0,43,100) and that each
place in the table be fillied 100 0 43 0
uniquely so that the table does
describe an operation. See discussion, Exercises 4.

- 43 43 0 43

10. Many answers are possible, of course. % 0 43 100
The only requirement is that at 0 0 0 43
least one entry in the table must not
be an element of the set {0,43,100)
(and that each place in the table be 100 2 0 L3
filled uniquely so the table does
describe an operation). See discussion, Exercises 3.

43 43 1 0
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5. Identity Element; Inverse of an Elesent
Skille and Understandings

1. To determine from a tadle vhether there is an identity element for
the operation, and if so, what it is.

2. To realige that an element cannot have an inverse unless there is
an idsntity element.

3. To determine from s table vhich elements have inverses.

4. To find the inverse of an clement, if the element has an inverse.

Teaching Mestions

Let the students experiment with several tables finding identity elements
and f{nverses of elements. Try to lead them to discover that there is an
identity element for an operation if, in the table, (1) there is a column
exactly like the left column, mand {2) there is a row exactly like the top
rov. The element associated with both will be the same, and will be the
identity, because if ax = x and ybs=y forall x and y in the set,
we may replace x by b and y by a toget &b =D = &,

* 1 2 3 L 5

1 2 3 4 = 1 In the figure the last row and

21 3 b5 1 2 the last column fit the above

3 L 5 1 2 3 conditions. 5 1is the identity

‘ element.

L} 5 1 2 3 N

p) 1 2 3 L 5

¥® 3 L 5 1l 2

1 4 5 1 2 3

2 5 1 2 3 N The third column and the fourth

i L rov £it the conditions. 5 1is
2 3 2 > the identity.

p) 3 b 5° 1 2

3 1 e 3 b 2




Lead the students to discover that an element has an inverse if the .
identity appears in the same reletive position in the row as in the column
associated with this element when the top row and left column are in the

same order.

For example: In the first table the second rlement in the third row and
the second element in the third column are both the identity element &. This
means that 3 has an inverse. Since 3 was associated with 2 both times
to get the ldentity %, then 2 and 3 must be inverses. The pairs 1
and 4, and % and 5 are seen to be inverses in & similar WRY .

Notice that the second table has the same elements and the same operation
ag the first, but that the order of the elements in the left column is
different from that in the top row. It is not possible now to use our ususl
check of symmetry about the diagonal for commutativity. The method of finding
the inverse of an element discussed above does not work out either.

The above may be pointed out to the students if you wish. None of the
other tables in the chapter will have its top row and left column in different

order.

The teacher should be warned that therc is some difficulty about division
and subtraction in & non-commutative system. For multiplication b is
ctlled the inverse of a 4if ab = ba = 1.
Thig can happen in & non-commutative system. . 1 2 3

This is such an example, where each element
is its own inverse. But the symbol 2 is

‘ 3 a3 1 2
ambiguous since 3+ x = 2 has the solution
Xx=1 and x+ 3 =2 has the solution 3 2 3 1

X = 2. Actually what {s usually done for
such systems is to multiply by the inverse and not divide st &ll. For instance

we would either have the product +2 =32 =13 or the product

wf -

1
e= =203 22,
2- 3 3

An analagous situation exists for subtraction when addition is not
commutative. This can be illustrated in terms of the above example if we

replace +« by + and % by .3,

However, it was felt that tuch considerations as these were much too
complex for inclusion in the text and hence when quest. ns of division or
subtraction arise, we restrict the systems to commutat! systeums.

21
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Answvers to Exercises b}

1. (a) In table {a), the identity is 5.

2.

In table (d), the identity is 2.

(b) In table (a), the inverseof 1 is L4 of 2 is 3; of 5 is 5.
In tadle (b), no element has an inverse.
In table (c), no element has an inverse.
In table (d), the inverseof 1 4is 3; of 2 is 2.

Each member of the sets for tables (a) and (d) has an inverse. The
operations described by tables (b) and {c) do not have identities so no
inverses can exist.

(a) Operation . Identity
(a) h
(v) 501
(e) 2
(a) None
(e) None
(£) None
(g) 1
(n) None

(b) The only inverses sre those listed below.

(a) 74 is the inverse of Tk.

(b) 501 1is the inverse of 501.

(e) 2 1is the inverse of 2.

(g) 1 4is the inverse of 1.
(c)} None.

No; if there are two identities (P and Q) for a given operation,
then consider the result when P is combined with Q. Sinece Q 1is an
identity, the result must be P, But since P is also an identity, the
result must be Q. Thus, P and Q must be the same element since
each equals the result of combining P and Q.

e2
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Answers to Exercises o)}

1. (a) 1x w1l (m0d6), x=1
=1l (md 6), not possible
3x m1 (mod 6), not possible
bx m1 (mod 6), not possible
Sx @l (mod 6), x =5

(v) 1, 5. Each is its own inverse.

2. (mod 5)

multiplicative b ( multiplicative
b (a Jinverse of a b+ a inverse of a
1 |2 3 l1+2m3 1-3%3
2 |2 3 2+2ml 23 W1
3 }2 3 3+2mb 3-3m4
2 |3 2 2+ 3mh 2.2®4
313 2 343m1 3-2m)
L |3 2 b+3m3 L.2om3
1 1k 4 14 by l1-4mh
2 {4 h 2+ 4 =3 2.4 =3
3 |4 L 3+ 4m2 3-4Lm2
L 14 b by bmi bebml
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3. (mod 5)

additive b+ (ldditive )
b | a }jinversz of a b-=a inverse of a
o]t L 0~1mhb O+ hmb
2|1 4 2-1m1 2+ 4ml
L {1 L h-1m3 L+bm3
152 3 1-2m 4 1+3m4
2 ]2 3 2-2m0 | 2+3m0
32 3 3-2N1 3+43EW1
214 1 2 -Lm3 2+1mE3
314 1 3-Lbmb 3+1mb
L I L 1 L-L4mo L+1mO
4, (a) no
(b) no
(e} no

(d) yes, except division by zero

5. {(a) {0,1,2,3,4,5)}
() (1,5}, (5}
(C) (Eah)p {195}p {5)

6. (a) {A,B}, {c,p}, (A,D}
(p) yes, D
(e} {c,D}
(d) f{c,D}

If you wish, you might bring up the general problem of defining an
operation which is inverse to a given operation ¥ defined on a set. If
there is an identity element e for ¥, if every element of the set has an

{nverse element in the set, and if % is associative, then
{the inverse of b) ¥ a

could be written & x' b. Then x' will be the inverse operation for .

ol .
“ f
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Hence
ax' b= (the inverse of b) % a.

For example: Suppose & and b are rafional numbers, b # 0, and % is
the multiplication operation, then %' is division (the inverse operation)

and % is the inverse of b.

Hence:

a-!*b:—)(l-

6. Wnat Is a Mathematical System?

Here the mathematical system is given an informal definition and is
followed by discussion in terms of previous examples and some new ones. Here
the teacher should not try to be toco formal.

Teaching Suggestions

In Section 3, it was pointed out that a table can list a set and
describe an operation defined on that set. Thus, a table really describes a
mathematical system, and not merely an operation. Illustrate by discussing
tables (a) - (e) of Section 3, and by showing that each table does deseribe
& mathematical system (& set and one or more operations defined on that set <=
in each case, it will be one operation).

In Example 1, Part (c) (egg-timer arithmetic), remind the pupils of the
symzetTy test for commutativity discovered in Problem 2 of Exercises 3. The
table for egg-timer arithmetic is symmetrie, so the operation 1s commtative.

Have the class decide on & word for the operstion in Tadble (c) of this
section. (“"Twiddle" is sometimes used.)

Answers to Exercises é

1. FEach one of Tables (a), (v), (c) describes a mathematical system.
For Table (a), the set is (A,B}; the operation is o.
For Table (b), the set is (P,Q,R,5); the operation is ¥ .
For Table (c), the set is {A,0,0O,\); the operation is ~.
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2.

3.

S

(a) A (e} Q (1) A
(b) © (£) s (3) B
(e) © (g) P (k) A
() B (n) N\ (1) R
The operation o is not commtative, since Table (&) is not symmetric.

The operations ¥ and ~ are both commtative, since both Tables (b)
and (c) are symmetric.

There 1g no identity element for the operation o.

There is no element e, such that both of the equations Ao e = A

and B o e = B are correct.

The element R 1is the identity element for the operation % . The row
of Table (b) with "R" in the left column is the same as the top row,
and the column with "R" at the top is the same as the left column.

The element A 1is the identity element for the operation ~. The first
row and column of Table (c) are the same as the top row end left column

regspectively.

(a)
(b)
(e)
(d)

(e)
(£)
(8)
(h)

Each of the operations ¥ and ~ seems to be associative since, in

(1) N\
(3) N\

W w ot o
/S /O O PO

each of the cases we have tried, the corresponding expressions are equal.
To prove the operations are associative, we would have to examine all
cases and show that the corresponding expressions are equal. To prove
an operation is not associative, a person would have to find one example
where the corresponding expressions sre not equal.

BRAINBUSTER. {(a) The element 2 cannot be combined with 2 by the
operation % (that is, 2 ¥2 is not defined).

{(b) 2% 1 1is not uniquely defined. Many results are possible when
2 and 1 are combined.

(¢) The set given by this table is (1,2,3,4}. But it is not possible
to combine every pair of elements {e.g. 3 and 3). We do not have

an operation defined on the set.




7. Mathematical Systems Without Numbers

Skills and Understandings

1. To recognize a mathemmtical system when it is described in words.

2. For systems without numbers: To recognize the elements of the set;
to recognize the operation; to recognize an identity element;
to recognize the inverse of an element.

Teaching §E§§gstions

Each pupil should have his own rectangle to manipulate, such as, a
3" X 5" card. Do not use square cards. Be sure that each pupil labels his
rectangle correctly so that comparisous between different pupils ere possidle.
Check especially that each corner of the card is labeled with the same letter
on both sides. Stress that the card is used only to represent a geometric
figure -- a closed rectangular region.

It cannot be repeated too often that the changes of position of a
rectangle are the elements of the set in the mathematical systen discussed
in this section. One of these changes is something that is "done"; that is, it
is a physical activity, but it is an element of the set -- it is not the
operation of the system. The operation of the system is much more elusive.
Any operation defined on the set must be a way of combining any two of these
rhysicel activities (changes) to get a definite thing. The particular
operation we have chosen combines two of these changes by doing the first one
and then the other. The result (definite thing) obtained is one of the changes,
but the operation i{s the way of combining them, that is: First do sea, 8nd
then do ... .

Discussion 2£ Exercises Z

3. In proving associativity, "all cases" must be considered. There is one
case Jor each triple of (not necessarily different) elements of the set
on which the operation is defined. For the operation ANTH, there are
4 elements in the set, so there will be 4+ h .4 = 64 triples; that is,
64 cases must be considered to prove the assoclative property.

9. and#6. For emse in grading written work it is essential that all students
use the same notation in these exercises. One poasible notation is
describved in the answers.
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2.

3.

h.

ARTH I v R R
I I v N R
v]|v 1 r ¥
H {8 R 1 Vv
R R H v I
(a) V (£) 1
(b) Vv (g) 1
(e) v (n) 1
(&) Vv (1) 1
(e) I
{a) Yes
(b) Yes
(c) Yes, the operation is associative. A proof would require that
64 cases be checked. Each pupil should check two or three; do
not attempt to check all cases. See discussion, Exercises 6.
(@) Yes. I is the identity.
(e) Yes. Each element is its own inverse.
(a)  ANTH LI F
I I F
F F I
(b) Yes
{e) Yes
(d) Yes. All cases can be checked (there are
See discussion of Problem 3, Exercises 6.
(e) Yes. I 15 the identity element.
(f) Yes. Each element is its own inverse.

28
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*6,

ANTH I R S T U v
I I R S T Y v
R R 8 I U \ T
S S I R \] T u
T T v U I S R
U U T A R I S
\ v U T S R I

The operation is bot commutative
identity element. Eachof I, T, U, V is its own inverse element;
R and S are inverses of each other.

Notation:

I: Ieave the square in place.
Rlz Rotate clockwise % of the
RE: Rotate clockwise % of the
RB: Rotate clockwise % of the
H: Flip the square over, usihg
\'H Flip the square over, using
Dlz Flip the square over, using
DE: Flip the square over, using
Note:

(R ANTH T# T ANTH R) I 1is the

way around.

way around.

way around.

& horizontal axis.

8 vertical axis.

an axis from upper left to lower right.

an axis from lower left to upper right.

It was suggested that a square card not be used. This problem is

included to show why such

a8 suggestion was made,.



ANTH I Rl RE R3 H v Dl D2

I I Rl RE R3 H A Dl D2

Rl Rl RE 33 I D2 Dl R v ‘
R2 R2 R3 I Rl A H D2 Dl

R3 33 I Rl Rg Dl D2 v H

H H Dl v Db I RE Rl R3

A v Db H Dl RE I R3 Rl

Dy Dl v D2 H R3 Rl I RE

DE D2 H D1 A Rl R3 R2 I

I is the identity element. The operation is not commmtative
(Ry ANTH H4#H ANTH R,).

8. The Counting Numbers and the Whole Numbers

This section has problems which lead the pupils to coneclude that the
counting numbers and the whole numbers each form a mathematical system.
It is pointed out that the distributive property with which the pupil is
familisr comes from the abstract discussion of this property. The pupils
should not be expected to duplicate the abstract definition.

One of the objectives of the section is {o show & way to pull together
the concept of systems.

Some of the sets of numbers considered in ordinary arithmetic are: the
rational numbers, the whole numbers, the counting numbers, the even numwbers,

etc.
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Discussion of Exercises §

k. One possible model of the mathematical system in this exercise is as
follows: Let A = {1,2}, B« {1,2,3}, C= {1,2,4), D« (1,2,3,4}.
Then, from the tables in the problem, the operation % is intersection
and the operation o is union. Each of these operations distributes
over the other.

Answers to Exercises §

1. (a) Since the sum of two counting numbers is alvays another counting
number and the product of two counting numbers is always a counting
number, the set is closed under addition and miltiplication.

(v) Both the commutative property and the sssociative property hold
for addition and multiplication.

Examples: Commutative: 2 + 3
L x6

3+2;
6 x4

Associative: 3 + (L +7) = (3 +4) + 7;
3X{6x8)=(3x%x6) x 3,

1

(¢) There is no identity element for addition.
The identity element for multiplication is 1; for every counting .
number n, ne+l =na=1-+n.

(d) The counting numbers are not closed under subtraction or division.
2. (&) The get of whoie numbers is closed under addition and muitiplication.
(b) Both operations are cemmutative‘nnd associative.

{¢) There is an identity element for addition. It is zero; for any whole
number n, n+ O0=n=0+n, The number 1 is the identity
element for multiplication.

The answers are the same as for 1 (a), (b), (c) except that there
is an identity element for addition in the whole number system and
not in the counting number system. |

3. (a) Three examples are: 2(3 + 4) = (2:3) + (2 «4);
57 +10) = (5+7) + (5+10);
1(1 +1) = (L+1) + (1 -1).

(b) Addition does not distribute over multiplication; for example,
2+ (3°4) =14 £30=(2+3).(2+4),

31
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4. See discussion, Exercises 7.
(a) Yes, here are 3 illustrations that ¥ distributes over o:

A¥(BoC)m=Am=(A%B)o (A% C)
B¥(BoB) =Bas(B#*B)o(B#B5)
c*¥(BoD) =Cs=(C%B)o (C#¥ D)

(t) Yes, here are 3 illustrations that o distributes over #.

Ao(B#C)sA=(AoB) ¥(Ao C)
Bo(B%B) =B=(BoB)+# (Bo B)
Co(B¥D)«D=(CoB) % (CoD)

5. (a) Closed; commtative; associative; 1 is the identity; only the
muber 1 has an inverse.

(b) Closed; commtative; associative; no identity; no inverses.

(¢) Closed; rommutative; associative; O is the idenmtity; only the
number O has an lnverse.

(d) Closed; commutative; associative; no identity; no inverses.

(e) Closed; commtative; associative; O 4is the identity; only the
pumber O has an inverse.

(£) Not closed; commtative; not associative; no identity; no inverse:

6. (a) Both sets are closed under the operations. Both operations are
commtative and associative. Both systems involve the same set.

(b) The system 5(a) has sn identity and 5(b) does mot. Also, the
sets are different in these two systems.

# 7. Many results are possible, of course.

%8, (a) Yes. We are asked to consider the two expressions a % (b o c)
and (a % b) o (a % c), and £find vhether or not they are always
equal. For example, using & =8, b =12, c =15,

8% (12015) = 8 % 60 = L.
(8%12) o (8%15) =Lkol =k,

(b) Yes. We are asked to consider the two expressions a o (b % c)
and (a o b) % (a0 c), and find whether or not they are always
equal. For example using a =8, b =12, ¢ =15
8o (12%15) = 8o 3 = 2k,

(8o 12) % (8 015) = 2h %120 = 2k,

32




9. Modular Arithmetic

In this section, the number line is used to provide a picture of how
equivalence classes of whole numbers can be developed. At this time it may
be wise to re-read the first paragraphs of Section 1. We use the term
"multiple” to mean "multiple by @ vhole mumber",

Problems which may be used for motivation to explain the meaning of
modular systems include the ordinary 12-hour clock, the days of the week,
and the months of the year. For example, "Today is Tuesday; what day will 1t
be six days from now?" Answer: Monday; this is (mod 7). "It is L:30
ofclock, What time will {t be 10 hours from now;" Answer: 2:30; this is
(mod 12).

Modular arithmetic may be thought of as a mathematical system with two
operations. Section 1 discussed modular addition and Section 2 discussed
modular muitiplication. The two operations together allow us to use the
distributive property; thus, the whole numbers form a system under modular
addition and multiplication. In modular arithmetic only a finite number of
symbols is needed because infinitely many whole numbers are represented by
ea~h symbol.

Other interesting highlights are:

A product of non-zero factors may be zero in some systems.
There may be many replacements for x in & number sentence to make it
true.

Answers to Exercises 9

1. (mod ) (mod 3)

x{o 1 2 3 4 XxX{0 1 2 3 & 5 6 7
olo o 0o 0 o 0of{o0o 0 o 0 0 0 0 o
140 1 2 3 4 110 1 2 3 4 5 6 7
210 2 4 1 3 210 2 4 6 0 2 4 6
310 3 1 4 2 3] 3 6 1 4 1 2 5
hlo & 3 2 1 Lo 4 o 4 o 4 o &

510 5 2 7 4 1 6 3

6{o 6 4 2 0 6 L4 o2

7V0 7T 6 5 4 3 2 1

(Encourage the purils to look for patterns and to use what they have
previously learned about systems to make the tables,)
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.b‘x 5 g@m LR &\.”‘

2. (a) (mod 5): Yes; {mod 8): Yes
(b) (mod 5): Yes; (mod 8): Yes
{c) (mod 5): Yes; (mod 8): Yes
{(d) (mod 5): 1; {mod 8): 1
{(e) (mod S): 1 snd 4 are their own inverses; 2 and 3 are inverses
of each other; O bas no inverse.
(mcd 8): Omly 1, 3, 5, 7 sre inverses; each is its own inverse.
(£} (mod 5): Yes; (mod 8): No. 2 X 4 @0 (mod 8),
4bx2m0 (md8), 4Lx4 mO (mod 8),
bx6m0 (mod 8), 6 x 4 mO (mod 8).

3. (a) 3 (¢) 6, 8, 12, 24
{v) 2 (a) %, 8
L. (a) 2 (e) &
(v) o0 (r) 1
(e) 5 #(g) 1. Any power of 6 ends in 6.
(d) o
5. (a) & (c)
(v) 2 (a)
6. (e) &4, 4 (e} 3, 3
(p) 1, 1 (d) Yes
Tc (&) Q, 0 {C) 0, 1
(v) 2, © (d) No
8. (a) 6 (e) ©
() 3, 7 (£} ©
(c) 0, & (g) 9
() 2 (h) Not defined in this system.
9. (a) 4; What nuxber added to 3 gives 72
(v) &
(e} 7
¥ {(a) 7

34
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12.

11.

- ¢} 1 2 3 b
o 0 L 3 2 1
1 1 0 4 3 2
2 2 1 o] 4 3
3 3 2 1 0 4
4 L 3 2 1 0

The set is closed under subtraction (mod 5).

(a)
(v)
(e)

(a)
(e)
(£)

(a)
(£)

3, 8, 13 and others (add 5)

3, 7, 11 and others (add &)

0 and all multiples of 5 of the form 9K, K 45 a counting
mumber.

Any even number

3, or any odd number greater than 3

1, 3, 5 and so on (all odd mumbers)

Any even number
1, 3, 5 7, 9, 11, 13 and so on (all odd nuzmbers )

35
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Saxple Questions

Part I. True - False
T 1. Operations can be descridbed by tables.
T 2. A symbol can be made to mean anything providing we define it.
F 3. ‘The identity for multiplication in ordinary arithmetic is zero.
F 4. The identity for addition in ordinary arithmetic is one.
T 5. The additive inverse of 2 4in the (mod 4) system is 2.
T 6. In ordinary arithmetic, with the set composed of all the rational
munbers except zero, the inverse of division is multiplication.
F 7. All mathematical systems are sets of mumbers.
F 8. In (mod5) arithmetic, 0/3 ®2 (mod 5).
T 9. The set {0,1,2,3) 1s closed under subtraction (mod 4).
Part II. Computation
Find the sums: Answers:
1. (9+ 2) (mod 12) 11
2. (5+ b4+ 3) (moa 6) 0
Find the differences:
3. (5-2) (x4 6) 3
k. (3 -5) (mod 7) 5
Find the products:
5. [{3+7) x6] (mod 9) 6
6. 32 {mod 8) 1

Find the quotients:

7.

8!

(mod 5) i

(mod 11) 0

o win
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Part III, lhltige Choice

The table below describes a mathematical system. It 18 to be used in
answering questions 1, 2, and 3 below.

0 A B c D
A c D A B
B D A B c
c A B c D
D B c D A

1. Which one of the following statements is true? (Answvers are starred).

A. The set {A,B,C,D} is bot closed with respect to the operation

o.
# B. The operation o is commtative.
C. The operation o does not have an identity element.
D. The operation o is pot associative.

E. None of the sbove.

2. The identity for the operation o is:

A. D
B. B
*#C. ¢C

D, Both A and B

E. None of the above.

3. In the mmthematical system:
A. Only B has an inverse.
B. Only D :as an inverse.
c. Only A and C have inverses.
D. None of the elements has an inverse.

&k, All the elemente have inverses.
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4., For wvhat modulus m 1is 2 - S= L4 (mod m) true?

A.

Mod 9
Mod 6
Mod 8
Mod 7

None of the above.

5. For the system consisting of the set of odd numbers and the operation
of multiplication:

The system is not closed.

The system is not commmtative.

The system has no identity element.
None of the above is correct.

A1l of the above are correct.

6. For the system consisting of the set of even numbers and the

operation of addition:

A.

X B,

c.

D.

E.

The system is not closed.

The system has an identity element.

The system uas an inverse for addition for each element.
A1l of the above are correct.

None of the sbove is correct.

7. A mathematical system consists of several things. Which of the
following -is 8lways necessary in a mathematical system?

A.
B.
c.
% D.

E.

Numbers

An identity element

The commtative property
One or more operations

None of the above
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Use the mathematical system as described below in answering Questions
8, 9, and 10. The set of elements in our system is the set of changes of a

rectangle.

The elements are

A B D C B A
| H v
D C A B C D
I means leave H means flip V means flip
alone. on the hori- ' on the vertical
zontal axis. axis,

The following is an illustration of our operation ¥ H

VX H means do change V and then do change H.

8., H¥H ig:

A. H
* B, I
C. R
D. V¥

E. None of the above.

[ ] 9. I »* R is:

#A. R
B. ¥V
C. I
D. H
E. R#%¥H

39
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its center.



10. (H#V)%®vV is:

A.
B.
¥ C.
D.

E.

I
Vaey
Hel
v

None of the above.



1.

2.
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